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1. INTRODUCTION

Computation of the spatial derivatives with non-local differential operators, such as the
Fourier pseudospectral method, may cause strong numerical artifacts in the form of non-
causal ringing. This situation occurs when regular grids are used. The problem is attacked
by using a staggered pseudospectral technique. The nature and the causes of acausal ringing
in regular grid methods and the reasons why staggered grid methods eliminate this prob-
lem are explained in the papers by Fornberg [7] andÖzdenvar and McMechan [8]. Thus,
the objective here is not to propose a new method, but to develop the algorithm for the
poroviscoelastic wave equation [3].Özdenvar and McMechan [9] developed a pseudospec-
tral staggered-grid algorithm for the poroelastic differential equations expressed in the
displacement formulation. Here, the equations are expressed in the velocity–stress formu-
lation, including attenuation mechanisms due to fluid/matrix interactions. As is well known,
one of the advantages of using the velocity–stress differential equations is the avoidance
of the differentiation of the material properties, which eliminates numerical artifacts and
makes the algorithm more stable [11].

The algorithm is illustrated for a physical situation that requires very high accuracy,
such as the gas–water contact in a natural gas reservoir, where large contrasts in material
properties occur. The staggered-grid solution is noise-free in the dynamic range where
regular grids generate artifacts that may have amplitudes similar to those of physical arrivals.
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2. POROVISCOELASTIC EQUATIONS OF MOTION

The constitutive equations for an inhomogeneous, isotropic poroelastic medium under
plane strain conditions are given by [1, 2]

τxx,t = Evx,x + (E − 2µ)vz,z+ αMε + sx, (1)

τzz,t = (E − 2µ)vx,x + Evz,z+ αMε + sz, (2)

τxz,t = µ(vx,z+ vz,x)+ sxz, (3)

p,t = −Mε + sf , (4)

and

ε = α(vx,x + vz,z)+ qx,x + qz,z, (5)

whereτxx, τzz, andτxz are the total stress components,p is the fluid pressure, thev’s and
theq’s are the solid and fluid (relative to the solid) particle velocities, andsx, sz, sxz, and
sf are the external sources of stress, for the solid and the fluid, respectively. The subscript
x denotes∂/∂x.

The elastic coefficients are given by

E = Km + 4

3
µ, (6)

M = K 2
s

D − Km
, (7)

D = Ks
[
1+ φ(KsK−1

f − 1
)]
, (8)

and

α = 1− Km

Ks
, (9)

with Km, Ks, andK f the bulk moduli of the drained matrix, the solid, and the fluid, respec-
tively; φ is the porosity, andµ is the shear modulus of the matrix (drained and saturated).
The stiffnessE is the P-wave modulus of the dry skeleton,M is the coupling modulus
between the solid and the fluid, andα is the poroelastic coefficient of effective stress.

Viscoelasticity is introduced into Biot’s poroelastic equations for modeling a variety of
dissipation mechanisms related to the skeleton–fluid interaction. One of these mechanism
is the squirt-flow [1], by which a force applied to the area of contact between two grains
produces a displacement of the surrounding fluid in and out of this area. Since the fluid
is viscous, the motion is not instantaneous and energy dissipation occurs. Skeleton–fluid
mechanisms are modeled by generalizing the coupling modulusM to a time dependent
relaxation function. On the other hand, we assume thatE andµ are frequency independent.
The approach is explained in [3].

The poroviscoelastic equations of motion are [3]:

(i) Biot–Newton dynamical equations:

τxx,x + τxz,z = ρvx,t + ρ f qx,t , (10)

τxz,x + τzz,z = ρvz,t + ρ f qz,t , (11)



522 CARCIONE AND HELLE

where

ρ = (1− φ)ρs + φρ f

is the composite density, withρs andρ f the solid and fluid densities, respectively.
(ii) Dynamic Darcy’s law:

−p,x = ρ f vx,t +mqx,t + η
κ

qx, (12)

and

−p,z = ρ f vz,t +mqz,t + η
κ

qz, (13)

wherem= Tρ f /φ, with T the tortuosity,η is the fluid viscosity, andκ is the permeability
of the medium.

(iii) Constitutive equations:

τxx,t = Evx,x + (E − 2µ)vz,z+ α
(

Mε +
L∑

l=1

el

)
+ sx, (14)

τzz,t = (E − 2µ)vx,x + Evz,z+ α
(

Mε +
L∑

l=1

el

)
+ sz, (15)

τxz,t = µ(vx,z+ vz,x)+ sxz, (16)

and

p,t = −
(

Mε +
L∑

l=1

el

)
+ sf , (17)

whereel , l = 1, . . . , L, are memory variables.
(iv) Memory variable equations:

el ,t = − 1

τσ l

[
M

(
L +

L∑
m=1

ϕm

)−1

ϕl ε + el

]
, (18)

for l = 1, . . . , L, whereτεl andτσ l are sets of relaxation times,L is the number of attenuation
mechanisms, and

ϕl = τεl

τσ l
− 1. (19)

3. STAGGERED MESH AND CALCULATION OF THE SPATIAL DERIVATIVES

On a regular grid the field components and material properties are represented at each grid
point, say, represented by the symbol♠, while on a staggered grid, variables and material
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properties are also defined at half-grid points as indicated in the mesh

♠ ♦ ♠ ♦ ♠ ♦ ♠ ♦
4 ♣ 4 ♣ 4 ♣ 4 ♣
♠ ♦ ♠ ♦ ♠ ♦ ♠ ♦
4 ♣ 4 ♣ 4 ♣ 4 ♣
♠ ♦ ♠ ♦ ♠ ♦ ♠ ♦
4 ♣ 4 ♣ 4 ♣ 4 ♣
♠ ♦ ♠ ♦ ♠ ♦ ♠ ♦

such that

♠ (i, j ) τxx, τzz, p, el , E, µ, α,M, τσ l , ϕl , sx, sz, sf ,

♦ (i + 1
2, j
)

vx,qx, ρ, ρ f , T, φ, η/κ,

4 (i, j + 1
2

)
vz,qz, ρ, ρ f , T, φ, η/κ,

♣ (i + 1
2, j + 1

2

)
τxz, µ, sxz.

(20)

Material properties at half-grid points♦,♣, and4 are computed by averaging the values
defined at regular points♠. The averaging is chosen in such a way as to reduce the error
between the numerical solution corresponding to an interface aligned with the numerical
grid and the equivalent solution obtained with a regular grid. Minimum ringing amplitudes
for the example illustrated in the next section are obtained when the averages are computed
as follows: the densities,T, φ, andη/κ at points♦ and4 as

ai+ 1
2 , j = 1

2(a
i, j + ai+1, j ) (21)

and

ai, j+ 1
2 = 1

2(a
i, j + ai, j+1), (22)

respectively, andµ at points♣ as [10](
µi+ 1

2 , j+ 1
2
)−1 = 1

4[(µi, j )−1+ (µi+1, j )−1+ (µi, j+1)−1+ (µi+1, j+1)−1]. (23)

A review of the artifacts and numerical instabilities caused by the Fourier differential
operator when using a regular grid can be found in [8]. As the authors show, the use of
a staggered grid overcomes these problems. The first-order derivative computed with the
staggered differential operator is evaluated between grid points and uses even-based Fourier
transforms. The standard first-order differential operator along thex-direction is

Dxφ =
kx(N)∑
kx=0

ikxφ̃(kx) exp(ikxx), (24)

whereφ̃ is the Fourier transform ofφ andkx(N) is the Nyquist wavenumber. Staggered
operators, which evaluate the derivatives between grid points, are given by

D±x φ =
kx(N)∑
kx=0

ikx exp(±ikx1x/2)φ̃(kx) exp(ikxx), (25)

where1x is the grid spacing.
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The staggered poroviscoelastic equations can be written as

♦ D+x τxx + D−z τxz = ρvx,t + ρ f qx,t ,

4 D−x τxz+ D+z τzz= ρvz,t + ρ f qz,t ,

♦ − D+x p = ρ f vx,t +mqx,t + η
κ

qx,

4 − D+z p = ρ f vz,t +mqz,t + η
κ

qz,

♠ τxx,t = E D−x vx + (E − 2µ)D−z vz+ α
(

Mε +
L∑

l=1

el

)
+ sx,

(26)♠ τzz,t = (E − 2µ)D−x vx + E D−z vz+ α
(

Mε +
L∑

l=1

el

)
+ sz,

♣ τxz,t = µ(D+z vx + D+x vz)+ sxz,

♠ p,t = −
(

Mε +
L∑

l=1

el

)
+ sf ,

♠ el ,t = − 1

τσ l

[
M

(
L +

L∑
m=1

ϕm

)−1

ϕl ε + el

]
,

♠ ε = α(D−x vx + D−z vz)+ D−x qx + D−z qz.

A time splitting algorithm is used to solve the differential equations. The technique, which
has fourth-order accuracy in time, is illustrated in detail in [4, 5].

TABLE I

Material Properties of the Single Constituents

Solid
Bulk modulus,Ks 35 GPa
Density,ρs 2650 kg/m3

Matrix
Bulk modulus,Km 1.7 GPa
Shear modulus,µ 1.855 GPa
Porosity,φ 0.3
Permeability,κ 1 D
Tortuosity,T 1

Gas
Bulk modulus,Kg 0.022 GPa
Density,ρg 100 kg/m3

Viscosity,ηg 0.015 cP

Water
Bulk modulus,Kw 2.4 GPa
Density,ρw 1000 kg/m3

Viscosity,ηw 1 cP
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4. EXAMPLE

A gas–water contact generates the characteristic bright spots observed in seismic surveys
in the Gulf of Mexico. This is one situation where the differential operator introduces a non-
causal ringing noise, generated by discontinuities in the material properties. We consider
the same media as those in the plane-wave analysis by Dutta and Ode [6], who computed
the reflection coefficients for a gas–water contact. In addition, we introduce a squirt-flow

FIG. 1. Snapshots after 2.25 ms of the solid and fluid particle velocities on a regular grid (a) and a staggered
grid (b). A bulk source, with a central frequency of 2.1 kHz, is at 1.5 m above the gas–water interface. No
absorbing boundaries have been applied since the wavefield does not reach the boundary of the mesh. The
staggered differential operator (b) does not generate the strong ringing and acausal noise observed in the regular-grid
snapshots (a).
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TABLE II

Properties of the Saturated Rock

Water-filled Gas-filled

ρ 2155 kg/m3 1885 kg/m3

cP+ (0) 2081 m/s 1500 m/s
cP+ (∞) 2234 m/s 1506 m/s
cP− (0) 937 m/s 467 m/s
cP− (∞) 971 m/s 467 m/s
fpeak(P+) 3.22 kHz 8.07 kHz
αP+ ( fpeak) 0.8 dB 0.116 dB

dissipation mechanism as in [3]. The material properties of the single constituents and
saturated porous medium are given in Tables I and II, respectively. Table II gives the
relaxed (ω = 0) and unrelaxed (ω = ∞) phase velocities of the fast compressional wave
(cP+) and the slow wave (cP− ), the central frequency of the dominant attenuation peak
( fpeak) corresponding to the squirt flow in water-saturated sandstone and to the Biot peak
in gas-saturated sandstone, and the attenuation factor at the central frequency (αP+). Phase
velocities and attenuations are plotted in Dutta and Ode’s article, together with the reflection
and transmission coefficients.

We consider a regular grid of 231× 231 points and a staggered grid of 238× 238
points, both with a grid spacing of 5 cm. The source is a Ricker-type wavelet with dominant
frequency of 2.1 kHz applied to the bulk. The wavefield is computed with a time step of
2.5 µs. Figures 1a and 1b compare snapshots at 2.25 ms caused by a source located at
1.5 m above the gas–water contact. The wave fronts are represented by circles or segments
of circles. No absorbing boundaries have been applied since, in the present simulation, the

FIG. 2. Interpretation of the individual wave events in the snapshots of vertical displacement velocity of
the solid (left) and the fluid (right). Four events can be observed in the upper gas-filled rock: the fast P-wave
(P+), the reflected P-wave(PR

+), the direct slow P-wave (P−), and another slow P-wave(P+PR
−) attached to the

contact boundary. In the lower water-filled rock the transmitted fast P-wave(PT
+) is attenuated by the squirt-flow

mechanism. On both sides of the gas/fluid contact significant slow waves are generated by conversion of the fast
P-wave. Note that the velocity of the slow wave in the water zone is about twice that in the gas zone (see Table II).
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wavefield does not reach the boundary of the mesh. As can be appreciated, the staggered
differential operator does not generate the strong ringing and acausal noise observed in the
regular-grid snapshots.

The individual wave types are identified in Fig. 2. Four different events can be clearly
identified in the upper medium (gas-filled pores) and two events in the lower medium. In the
lower medium (water-filled pores) the fast P-wave is strongly attenuated by the squirt-flow
mechanism. On both sides of the gas/fluid contact significant slow waves are generated by
conversion of the fast P-wave. The latter is considered to be an important mechanism for
the loss of fast P-wave energy in the sedimentary layers [3].
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