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1. INTRODUCTION

Computation of the spatial derivatives with non-local differential operators, such as !
Fourier pseudospectral method, may cause strong numerical artifacts in the form of r
causal ringing. This situation occurs when regular grids are used. The problem is attac
by using a staggered pseudospectral technique. The nature and the causes of acausal 1
in regular grid methods and the reasons why staggered grid methods eliminate this p
lem are explained in the papers by Fornberg [7] @mdlenvar and McMechan [8]. Thus,
the objective here is not to propose a hew method, but to develop the algorithm for
poroviscoelastic wave equation [€)zdenvar and McMechan [9] developed a pseudospe:
tral staggered-grid algorithm for the poroelastic differential equations expressed in
displacement formulation. Here, the equations are expressed in the velocity—stress fo
lation, including attenuation mechanisms due to fluid/matrix interactions. As is well know
one of the advantages of using the velocity—stress differential equations is the avoide
of the differentiation of the material properties, which eliminates numerical artifacts a
makes the algorithm more stable [11].

The algorithm is illustrated for a physical situation that requires very high accurac
such as the gas—water contact in a natural gas reservoir, where large contrasts in ma
properties occur. The staggered-grid solution is noise-free in the dynamic range wt
regular grids generate artifacts that may have amplitudes similar to those of physical arriy

520

0021-9991/99 $30.00
Copyright®© 1999 by Academic Press
All rights of reproduction in any form reserved.



POROVISCOELASTIC WAVE EQUATION 521

2. POROVISCOELASTIC EQUATIONS OF MOTION

The constitutive equations for an inhomogeneous, isotropic poroelastic medium ur
plane strain conditions are given by [1, 2]

Txx,t = EUx,x + (E - ZM)UZ,Z + aMe + 54, (1)
Tzzt = (E — ZM)UX,X + EUz,z +aMe + 5, (2)
Txzt = M(Ux,z + Vzx) + Sxz, (3)
pt = —Me + sy, (4)
and
€ = a(vxx + Vzz) + Ox x + Uzz, )

wheretyy, 122, andty, are the total stress componengsis the fluid pressure, thes and
theq’s are the solid and fluid (relative to the solid) particle velocities, snd;, sz, and
st are the external sources of stress, for the solid and the fluid, respectively. The subs
x denotes)/ax.

The elastic coefficients are given by

4
E: Km+7l‘L» (6)
3
KZ
M = s 7
D-—Kp’ (7)
D = Ks[1+ ¢(KsKit = 1)], (8)
and
Km
=1--2 9
a K< 9

with Km,, Kg, andK ¢ the bulk moduli of the drained matrix, the solid, and the fluid, respec
tively; ¢ is the porosity, ange is the shear modulus of the matrix (drained and saturatec
The stiffnesskE is the P-wave modulus of the dry skeletdw, is the coupling modulus
between the solid and the fluid, aads the poroelastic coefficient of effective stress.

Viscoelasticity is introduced into Biot's poroelastic equations for modeling a variety |
dissipation mechanisms related to the skeleton—fluid interaction. One of these mechal
is the squirt-flow [1], by which a force applied to the area of contact between two gral
produces a displacement of the surrounding fluid in and out of this area. Since the f
is viscous, the motion is not instantaneous and energy dissipation occurs. Skeleton—
mechanisms are modeled by generalizing the coupling modJlus a time dependent
relaxation function. On the other hand, we assumeHhatdu are frequency independent.
The approach is explained in [3].

The poroviscoelastic equations of motion are [3]:

(i) Biot—Newton dynamical equations:

Txx,x T Txzz = PUxt + PiUx.t» (10)
Txzx + Tzzz = PVzt + P10zt, (11)
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where

p=A—¢)ps+ ¢ps

is the composite density, withy andp; the solid and fluid densities, respectively.
(i) Dynamic Darcy'’s law:

—Px = PfUxt + MGt + qu7 (12)
and
n
—Pz=pPtVzt + MG + ;an (13)

wherem = Tp; /¢, with T the tortuosityy is the fluid viscosity, and is the permeability
of the medium.
(iii) Constitutive equations:

L
Txx,t = va,x+(E_ZH)Uz.z+a<MG+ZQ> + Sx, (14)
=1
L
Tzzt = (E_ZH)Ux,x+EUz,z+a<M5+ZQ) + S, (15)
=1
Txzt = M(vx,z + Uz,x) + Sxz, (16)
and
L
p,t=—<M€+ZQ>+Sf, 7
I=1
whereq,| =1, ..., L, are memory variables.

(iv) Memory variable equations:

1
at=—— , (18)
Tl

L _l
M<L +Z‘Pm) pe + @
m=1

forl =1, ..., L, wherer, andz, are sets of relaxation timelsjs the number of attenuation
mechanisms, and

=41 (19)

Tol

3. STAGGERED MESH AND CALCULATION OF THE SPATIAL DERIVATIVES

On aregular grid the field components and material properties are represented at eacl
point, say, represented by the symglwhile on a staggered grid, variables and materia
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properties are also defined at half-grid points as indicated in the mesh

6> 60 60
A & A & A & A &
L RO BRI BRI TR
A & A & A & A &
L RGN TR BRI R
A & A & A & A &
L RGN TR TR TR
such that
Q(I’J) TXX’TZZa p»agE,MJX,M,TJIJPI,S(’SZ,Sf,
O (i+3.0) Uy Ocs 0, o1, To b n/k,
o (20)
A j+13) V2, Gz, 0. 1. T, @, /K,

* (l +%,J +%) TXZ’H/vsXZ'

Material properties at half-grid points, &, andA are computed by averaging the values
defined at regular poin. The averaging is chosen in such a way as to reduce the ert
between the numerical solution corresponding to an interface aligned with the numer
grid and the equivalent solution obtained with a regular grid. Minimum ringing amplitud
for the example illustrated in the next section are obtained when the averages are comy
as follows: the densitieg,, ¢, andn/k at points¢ andA as

a*zl = 1@ 4aitti) (1)
and
Qi+ — %(ai,j +abith, (22)
respectively, angk at pointsé as [10]
(IR = Ay T ()T ()T (Y)Y (23)

A review of the artifacts and numerical instabilities caused by the Fourier different
operator when using a regular grid can be found in [8]. As the authors show, the us
a staggered grid overcomes these problems. The first-order derivative computed with
staggered differential operator is evaluated between grid points and uses even-based F
transforms. The standard first-order differential operator along-lieection is

kx(N)

Dxg = > ikudh(kx) eXRlikxX), (24)

ke=0
where is the Fourier transform af andk,(N) is the Nyquist wavenumber. Staggered
operators, which evaluate the derivatives between grid points, are given by

kx (N)

Digp = iky exp(iky Ax/2)¢(kx) eXplikyX), (25)
k=0

whereAx is the grid spacing.
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The staggered poroviscoelastic equations can be written as

& DY tux + Dy txz = poxt + o1 0kt
A Dy txz+ D] T2z = pvzt + 0z,
O = DfP = prvws + Mt + G
A =Dp=prvz+ MG+ LG

L
& T = ED;UX—I—(E—Z/L)Dz_vz—l-ot(Me—i-Za) + 5,
=1

- - 26
(] TZZKZ(E—ZM)DXUX-I—EDZUz-f-Ol(Me—i—Za)—}-sz, (26)
=1
& Tt = M(D;vx + D;Uz) + Sxz,

L
o p,t:—<Me+Za> +st,

1=1
L -1
M<L+Z¢m> Qe +@
m=1

® c=o(D v+ D;v,)+ D o« + D;q.

’

1
® gi=——
Tol

A time splitting algorithm is used to solve the differential equations. The technique, whi
has fourth-order accuracy in time, is illustrated in detail in [4, 5].

TABLE |
Material Properties of the Single Constituents

Solid
Bulk modulus,Kg 35 GPa
Density, ps 2650 kg/ni
Matrix
Bulk modulus,K, 1.7 GPa
Shear modulusy 1.855 GPa
Porosity,¢ 0.3
Permeability, 1D
Tortuosity, T 1
Gas
Bulk modulus,Kg4 0.022 GPa
Density, pq 100 kg/n#
Viscosity, 14 0.015cP
Water
Bulk modulus,K,, 2.4 GPa
Density, p,, 1000 kg/ni

Viscosity, n,, 1cP
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4. EXAMPLE

A gas—water contact generates the characteristic bright spots observed in seismic su
in the Gulf of Mexico. This is one situation where the differential operator introduces a nc
causal ringing noise, generated by discontinuities in the material properties. We cons
the same media as those in the plane-wave analysis by Dutta and Ode [6], who comf
the reflection coefficients for a gas—water contact. In addition, we introduce a squirt-fl

0 5 10

Depth (m)
Solid
particle velocity

=10

Fluid
particle velocity

a
0 5 10
1 1 1
o_
g 2
: E
3 22
] 2 E
0 o
2
3
= QO
273
]
Bg
b 5
=1

FIG. 1. Snapshots after 2.25 ms of the solid and fluid particle velocities on a regular grid (a) and a stagge
grid (b). A bulk source, with a central frequency of 2.1 kHz, is at 1.5 m above the gas—water interface.
absorbing boundaries have been applied since the wavefield does not reach the boundary of the mest
staggered differential operator (b) does not generate the strong ringing and acausal noise observed in the regul
shapshots (a).
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TABLE Il
Properties of the Saturated Rock

Water-filled Gas-filled
0 2155 kg/nd 1885 kg/ni
cp, (0) 2081 m/s 1500 m/s
Cp, (00) 2234 m/s 1506 m/s
cr_(0) 937 m/s 467 m/s
cp_(00) 971 m/s 467 m/s
foead Ps) 3.22 kHz 8.07 kHz
ap, (fpean 0.8dB 0.116 dB

dissipation mechanism as in [3]. The material properties of the single constituents
saturated porous medium are given in Tables | and Il, respectively. Table Il gives
relaxed ¢ = 0) and unrelaxedd = oo) phase velocities of the fast compressional wave
(cp,) and the slow wavect ), the central frequency of the dominant attenuation pea
(fpeal corresponding to the squirt flow in water-saturated sandstone and to the Biot p
in gas-saturated sandstone, and the attenuation factor at the central frequendylfase
velocities and attenuations are plotted in Dutta and Ode’s article, together with the reflec
and transmission coefficients.

We consider a regular grid of 232 231 points and a staggered grid of 23838
points, both with a grid spacing of 5 cm. The source is a Ricker-type wavelet with domin:
frequency of 2.1 kHz applied to the bulk. The wavefield is computed with a time step
2.5 us. Figures 1la and 1b compare snapshots at 2.25 ms caused by a source local
1.5 m above the gas—water contact. The wave fronts are represented by circles or segr
of circles. No absorbing boundaries have been applied since, in the present simulation

FIG. 2. Interpretation of the individual wave events in the snapshots of vertical displacement velocity
the solid (left) and the fluid (right). Four events can be observed in the upper gas-filled rock: the fast P-w
(P;), the reflected P-wavéP?), the direct slow P-wave (B, and another slow P-waw@®, P*) attached to the
contact boundary. In the lower water-filled rock the transmitted fast P-®lveis attenuated by the squirt-flow
mechanism. On both sides of the gas/fluid contact significant slow waves are generated by conversion of th
P-wave. Note that the velocity of the slow wave in the water zone is about twice that in the gas zone (see Tabl
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wavefield does not reach the boundary of the mesh. As can be appreciated, the stag
differential operator does not generate the strong ringing and acausal noise observed i
regular-grid snapshots.

The individual wave types are identified in Fig. 2. Four different events can be clea
identified in the upper medium (gas-filled pores) and two events in the lower medium. In
lower medium (water-filled pores) the fast P-wave is strongly attenuated by the squirt-fl
mechanism. On both sides of the gas/fluid contact significant slow waves are generate
conversion of the fast P-wave. The latter is considered to be an important mechanisn
the loss of fast P-wave energy in the sedimentary layers [3].
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